Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.204
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612573

RESUMO

With the rapid emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), various levels of resistance against existing anti-tuberculosis (TB) drugs have developed. Consequently, the identification of new anti-TB targets and drugs is critically urgent. DNA gyrase subunit B (GyrB) has been identified as a potential anti-TB target, with novobiocin and SPR719 proposed as inhibitors targeting GyrB. Therefore, elucidating the molecular interactions between GyrB and its inhibitors is crucial for the discovery and design of efficient GyrB inhibitors for combating multidrug-resistant TB. In this study, we revealed the detailed binding mechanisms and dissociation processes of the representative inhibitors, novobiocin and SPR719, with GyrB using classical molecular dynamics (MD) simulations, tau-random acceleration molecular dynamics (τ-RAMD) simulations, and steered molecular dynamics (SMD) simulations. Our simulation results demonstrate that both electrostatic and van der Waals interactions contribute favorably to the inhibitors' binding to GyrB, with Asn52, Asp79, Arg82, Lys108, Tyr114, and Arg141 being key residues for the inhibitors' attachment to GyrB. The τ-RAMD simulations indicate that the inhibitors primarily dissociate from the ATP channel. The SMD simulation results reveal that both inhibitors follow a similar dissociation mechanism, requiring the overcoming of hydrophobic interactions and hydrogen bonding interactions formed with the ATP active site. The binding and dissociation mechanisms of GyrB with inhibitors novobiocin and SPR719 obtained in our work will provide new insights for the development of promising GyrB inhibitors.


Assuntos
Mycobacterium tuberculosis , Novobiocina/farmacologia , Termodinâmica , Antituberculosos/farmacologia , Simulação de Dinâmica Molecular , Trifosfato de Adenosina
2.
RSC Adv ; 14(16): 11311-11321, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38595722

RESUMO

This work aims to determine the optimal conditions for emulsion cross-linking of chitosan (CHS) with various molecular weights using glutaraldehyde as a cross-linking agent to produce 5-fluorouracil-loaded CHS microspheres (5-FU/CHS). Their drug loading and encapsulation efficiencies are found to be in the range of 3.87-12.35% and 20.13-70.45%, respectively. The dynamic light scattering results show that 5-FU/CHS microspheres are micron-sized with a uniform size distribution, and the scanning electron microscopy results show that they are spherical. The results of thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy demonstrate that 5-FU is successfully incorporated into the microspheres. The in vitro release tests show that 5-FU/CHS have a prolonged, pH-responsive release pattern of 5-FU, and the cumulative release rate under acidic condition is much larger than that under neutral conditions. The drug release kinetic analysis further demonstrates that the release of 5-FU can be well described by the Fickian diffusion model.

3.
Food Microbiol ; 121: 104496, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637067

RESUMO

Phospholipase D plays a critical regulatory role in the pathogenicity of filamentous fungi. However, the molecular mechanism of PLD regulating the pathogenicity of filamentous fungi has not been reported. In this research, the previously constructed TrPLD1 and TrPLD2 (TrPLDs) mutants were used as test strains. Firstly, the function of TrPLDs in Trichothecium roseum was studied. Then, the effects of TrPLDs on the pathogenicity of T. roseum and the quality of the inoculated apples were verified. The results suggested that the deletion of TrPLD1 delayed the spore germination of ΔTrPLD1 and inhibited germ tube elongation by down-regulating the expressions of TrbrlA, TrabaA and TrwetA. By down-regulating the extracellular enzyme-coding gene expressions, ΔTrPLD1 inhibited the degradation of apple fruit cell wall and the change of fatty acid content during infection, reduced the cell membrane permeability and malondialdehyde (MDA) content of apple fruit, thereby maintaining the integrity of fruit cell membrane, and reduced the pathogenicity of ΔTrPLD1 to apple and kept the quality of apple. However, ΔTrPLD2 did not have a significant effect on the infection process of apple fruit by the pathogen.


Assuntos
Hypocreales , Malus , Malus/microbiologia , Frutas/microbiologia , Virulência/genética
4.
Acta Neuropathol Commun ; 12(1): 61, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637883

RESUMO

We aimed to identify the druggable cell-intrinsic vulnerabilities and target-based drug therapies for PitNETs using the high-throughput drug screening (HTS) and genomic sequencing methods. We examined 9 patient-derived PitNET primary cells in HTS. Based on the screening results, the potential target genes were analyzed with genomic sequencing from a total of 180 PitNETs. We identified and verified one of the most potentially effective drugs, which targeted the Histone deacetylases (HDACs) both in in vitro and in vivo PitNET models. Further RNA sequencing revealed underlying molecular mechanisms following treatment with the representative HDACs inhibitor, Panobinostat. The HTS generated a total of 20,736 single-agent dose responses which were enriched among multiple inhibitors for various oncogenic targets, including HDACs, PI3K, mTOR, and proteasome. Among these drugs, HDAC inhibitors (HDACIs) were, on average, the most potent drug class. Further studies using in vitro, in vivo, and isolated PitNET primary cell models validated HDACIs, especially Panobinostat, as a promising therapeutic agent. Transcriptional surveys revealed substantial alterations to the Nrf2 signaling following Panobinostat treatment. Moreover, Nrf2 is highly expressed in PitNETs. The combination of Panobinostat and Nrf2 inhibitor ML385 had a synergistic effect on PitNET suppression. The current study revealed a class of effective anti-PitNET drugs, HDACIs, based on the HTS and genomic sequencing. One of the representative compounds, Panobinostat, may be a potential drug for PitNET treatment via Nrf2-mediated redox modulation. Combination of Panobinostat and ML385 further enhance the effectiveness for PitNET treatment.


Assuntos
Tumores Neuroendócrinos , Neoplasias Hipofisárias , Humanos , Panobinostat/farmacologia , Panobinostat/uso terapêutico , Fator 2 Relacionado a NF-E2/genética , Tumores Neuroendócrinos/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Transdução de Sinais
5.
Front Public Health ; 12: 1383966, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638466

RESUMO

Background: The COVID-19 pandemic has presented unique challenges to individuals worldwide, with a significant focus on the impact on sleep. However, the precise mechanisms through which emotional and cognitive variables mediate this relationship remain unclear. To expand our comprehensive understanding of variables, the present study utilizes the Preventive Stress Management theory, to test the relationship between perceived social support and sleep quality, as well as the effect of perceived COVID-19 stress, hope, negative emotions and coping styles. Methods: Data were collected in March 2022 from 1,034 college students in two universities located in Liaoning Province, China, using an online survey platform regarding perceived social support, perceived COVID-19 stress, sleep quality, hope, negative emotions and coping styles. The moderated mediation model were conducted using Process macro program (Model 6) and the syntax in SPSS. Results: The results revealed perceived COVID-19 stress and negative emotions sequentially mediated the negative relationship between perceived social support and sleep quality. Furthermore, hope and coping styles were found to moderate the sequential mediating effect. Conclusion: The present study sheds light on the pathways that affect sleep quality among college students during the COVID-19 pandemic. Findings highlight the protective roles played by positive social and personal resources, such as perceived social support, hope, and effective coping styles, against sleep problems. These insights have important implications for the development of targeted interventions to improve sleep outcomes during this challenging time.


Assuntos
COVID-19 , Pandemias , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Sono , Qualidade do Sono , Aprendizagem
6.
Cell Signal ; : 111169, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599440

RESUMO

Cardiac resident macrophages (CRMs) are essential in maintaining the balance of the immune homeostasis in the heart. One of the main factors in the progression of cardiovascular diseases, such as myocarditis, myocardial infarction(MI), and heart failure(HF), is the imbalance in the regulatory mechanisms of CRMs. Recent studies have reported novel heterogeneity and spatiotemporal complexity of CRMs, and their role in maintaining cardiac immune homeostasis and treating cardiovascular diseases. In this review, we focus on the functions of CRMs, including immune surveillance, immune phagocytosis, and immune metabolism, and explore the impact of CRM's homeostasis imbalance on cardiac injury and cardiac repair. We also discuss the therapeutic approaches linked to CRMs. The immunomodulatory strategies targeting CRMs may be a therapeutic approach for the treatment of cardiovascular disease.

7.
Plant Cell Rep ; 43(5): 116, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622229

RESUMO

KEY MESSAGE: The study on the GmDWF1-deficient mutant dwf1 showed that GmDWF1 plays a crucial role in determining soybean plant height and yield by influencing the biosynthesis of brassinosteroids. Soybean has not adopted the Green Revolution, such as reduced height for increased planting density, which have proven beneficial for cereal crops. Our research identified the soybean genes GmDWF1a and GmDWF1b, homologous to Arabidopsis AtDWF1, and found that they are widely expressed, especially in leaves, and linked to the cellular transport system, predominantly within the endoplasmic reticulum and intracellular vesicles. These genes are essential for the synthesis of brassinosteroids (BR). Single mutants of GmDWF1a and GmDWF1b, as well as double mutants of both genes generated through CRISPR/Cas9 genome editing, exhibit a dwarf phenotype. The single-gene mutant exhibits moderate dwarfism, while the double mutant shows more pronounced dwarfism. Despite the reduced stature, all types of mutants preserve their node count. Notably, field tests have shown that the single GmDWF1a mutant produced significantly more pods than wild-type plants. Spraying exogenous brassinolide (BL) can compensate for the loss in plant height induced by the decrease in endogenous BRs. Comparing transcriptome analyses of the GmDWF1a mutant and wild-type plants revealed a significant impact on the expression of many genes that influence soybean growth. Identifying the GmDWF1a and GmDWF1b genes could aid in the development of compact, densely planted soybean varieties, potentially boosting productivity.


Assuntos
Arabidopsis , Brassinosteroides , Brassinosteroides/metabolismo , Soja/genética , Sistemas CRISPR-Cas/genética , Mutação/genética , Arabidopsis/metabolismo , Edição de Genes , Regulação da Expressão Gênica de Plantas/genética
8.
Expert Rev Proteomics ; : 1-12, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584506

RESUMO

INTRODUCTION: Protein microarray is a promising immunomic approach for identifying biomarkers. Based on our previous study that reviewed parasite antigens and recent parasitic omics research, this article expands to include information on vector-borne parasitic diseases (VBPDs), namely, malaria, schistosomiasis, leishmaniasis, babesiosis, trypanosomiasis, lymphatic filariasis, and onchocerciasis. AREAS COVERED: We revisit and systematically summarize antigen markers of vector-borne parasites identified by the immunomic approach and discuss the latest advances in identifying antigens for the rational development of diagnostics and vaccines. The applications and challenges of this approach for VBPD control are also discussed. EXPERT OPINION: The immunomic approach has enabled the identification and/or validation of antigen markers for vaccine development, diagnosis, disease surveillance, and treatment. However, this approach presents several challenges, including limited sample size, variability in antigen expression, false-positive results, complexity of omics data, validation and reproducibility, and heterogeneity of diseases. In addition, antigen involvement in host immune evasion and antigen sensitivity/specificity are major issues in its application. Despite these limitations, this approach remains promising for controlling VBPD. Advances in technology and data analysis methods should continue to improve candidate antigen identification, as well as the use of a multiantigen approach in diagnostic and vaccine development for VBPD control.

9.
J Inflamm Res ; 17: 1337-1347, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434583

RESUMO

Purpose: We aim to explore the relationship between Homer1 and the outcomes of AIS patients at 3 months. Patients and Methods: This prospective cohort study was conducted from May 2022 to March 2023. In this study, we investigated the association between serum Homer1 levels by enzyme-linked immunosorbent assay at admission and functional outcomes of patients at 3 months after AIS. Results: Overall, 89 AIS patients (48 good outcomes and 41 poor outcomes) and 83 healthy controls were included. The median serum Homer1 level of patients at admission with poor outcomes was significantly higher than that of patients with good outcomes (39.33 vs 33.15, P<0.001). Serum Homer1 levels at admission were positively correlated with the severity of AIS (r = 0.488, P<0.001). The optimal cutoff of serum Homer1 level as an indicator for an auxiliary diagnosis of 3 months functional outcomes was 35.07 pg/mL, with a sensitivity of 75.0% and a specificity of 92.7% (AUC 0.837; 95% CI [0.744-0.907]; P<0 0.001). The odds ratio of MRS > 2 predicted by the level of serum Homer1 after 3 months was 1.665 (1.306-2.122; P<0.001). Conclusion: Serum concentrations of Homer1 have a high predictive value for neurobehavioral outcomes after acute ischemic stroke. Higher serum Homer1 levels (>35.07 pg/mL) were positively associated with poor functional outcomes of patients 3 months post-stroke.

10.
Food Chem X ; 22: 101314, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38550895

RESUMO

This study aimed to utilize Enterococcus lactis S-15 for the preparation of fermented shrimp gels. The gel properties and the gelation mechanism of proteins were investigated under acid-induced denaturation and protein degradation, and the quality of the gel was evaluated. Results showed that the pH of the shrimp surimi decreased from 7.35 to 4.74. The optimal gel strength observed at 24 h of fermentation was 326.41 g × cm, and disulfide bonds played a crucial role in the fermented gel. The fermented gel exhibited higher cooking loss rates and freeze-thaw loss rates compared to the heat-induced gel (control). However, fermented gels exhibited high overall acceptability both before and after cooking. The volatile basic nitrogen content in the fermented gel remained below 28.00 mg/100 g, within the safe range, and no histamine was detected. The results provide valuable data for the development and reprocessing of fermented shrimp surimi gel.

11.
Angew Chem Int Ed Engl ; : e202403022, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485698

RESUMO

Integrating solar energy into rechargeable battery systems represents a significant advancement towards sustainable energy storage solutions. Herein, we propose a win-win solution to reduce the shuttle effect of polysulfide and improve the photocorrosion stability of CdS, thereby enhancing the energy conversion efficiency of rGO/CdS-based photorechargeable integrated lithium-sulfur batteries (PRLSBs). Experimental results show that CdS can effectively anchor polysulfide under sunlight irradiation for 20 minutes. Under a high current density (1 C), the discharge-specific capacity of the PRLSBs increased to 971.30 mAh g-1, which is 113.3 % enhancement compared to that of under dark condition (857.49 mAh g-1). Remarkably, without an electrical power supply, the PRLSBs can maintain a 21 hours discharge process following merely 1.5 hours of light irradiation, achieving a breakthrough solar-to-electrical energy conversion efficiency of up to 5.04 %. Ex situ X-ray photoelectron spectroscopy (XPS) and in situ Raman analysis corroborate the effectiveness of this complementary weakness approach in bolstering redox kinetics and curtailing polysulfide dissolution in PRLSBs. This work showcases a feasible strategy to develop PRLSBs with potential dual-functional metal sulfide photoelectrodes, which will be of great interest in future-oriented off-grid photocell systems.

12.
Nucleic Acids Res ; 52(6): 3433-3449, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38477394

RESUMO

The regulation of carbon metabolism and virulence is critical for the rapid adaptation of pathogenic bacteria to host conditions. In Pseudomonas aeruginosa, RccR is a transcriptional regulator of genes involved in primary carbon metabolism and is associated with bacterial resistance and virulence, although the exact mechanism is unclear. Our study demonstrates that PaRccR is a direct repressor of the transcriptional regulator genes mvaU and algU. Biochemical and structural analyses reveal that PaRccR can switch its DNA recognition mode through conformational changes triggered by KDPG binding or release. Mutagenesis and functional analysis underscore the significance of allosteric communication between the SIS domain and the DBD domain. Our findings suggest that, despite its overall structural similarity to other bacterial RpiR-type regulators, RccR displays a more complex regulatory element binding mode induced by ligands and a unique regulatory mechanism.


Assuntos
Proteínas de Bactérias , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Virulência/genética , Fatores de Virulência/genética
13.
BMC Med Genomics ; 17(1): 80, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549107

RESUMO

OBJECTIVE: Mice are routinely utilized as animal models of drug-induced liver injury (DILI), however, there are significant differences in the pathogenesis between mice and humans. This study aimed to compare gene expression between humans and mice in acetaminophen (APAP)-induced liver injury (AILI), and investigate the similarities and differences in biological processes between the two species. METHODS: A pair of public datasets (GSE218879 and GSE120652) obtained from GEO were analyzed using "Limma" package in R language, and differentially expressed genes (DEGs) were identified, including co-expressed DEGs (co-DEGs) and specific-expressed DEGS (specific-DEGs). Analysis of Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed analyses for specific-DEGs and co-DEGs. The co-DEGs were also used to construct transcription factor (TF)-gene network, gene-miRNA interactions network and protein-protein interaction (PPI) network for analyzing hub genes. RESULTS: Mouse samples contained 1052 up-regulated genes and 1064 down-regulated genes, while human samples contained 1156 up-regulated genes and 1557 down-regulated genes. After taking the intersection between the DEGs, only 154 co-down-regulated and 89 co-up-regulated DEGs were identified, with a proportion of less than 10%. It was suggested that significant differences in gene expression between mice and humans in drug-induced liver injury. Mouse-specific-DEGs predominantly engaged in processes related to apoptosis and endoplasmic reticulum stress, while human-specific-DEGs were concentrated around catabolic process. Analysis of co-regulated genes reveals showed that they were mainly enriched in biosynthetic and metabolism-related processes. Then a PPI network which contains 189 nodes and 380 edges was constructed from the co-DEGs and two modules were obtained by Mcode. We screened out 10 hub genes by three algorithms of Degree, MCC and MNC, including CYP7A1, LSS, SREBF1, FASN, CD44, SPP1, ITGAV, ANXA5, LGALS3 and PDGFRA. Besides, TFs such as FOXC1, HINFP, NFKB1, miRNAs like mir-744-5p, mir-335-5p, mir-149-3p, mir-218-5p, mir-10a-5p may be the key regulatory factors of hub genes. CONCLUSIONS: The DEGs of AILI mice models and those of patients were compared, and common biological processes were identified. The signaling pathways and hub genes in co-expression were identified between mice and humans through a series of bioinformatics analyses, which may be more valuable to reveal molecular mechanisms of AILI.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , MicroRNAs , Humanos , Animais , Camundongos , Acetaminofen/toxicidade , Perfilação da Expressão Gênica , MicroRNAs/genética , Redes Reguladoras de Genes , Biologia Computacional , Expressão Gênica
14.
Acta Pharm Sin B ; 14(3): 1187-1203, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486999

RESUMO

Constitutive activation of GNAQ/11 is the initiative oncogenic event in uveal melanoma (UM). Direct targeting GNAQ/11 has yet to be proven feasible as they are vital for a plethora of cellular functions. In search of genetic vulnerability for UM, we found that inhibition of euchromatic histone lysine methyltransferase 2 (EHMT2) expression or activity significantly reduced the proliferation and migration capacity of cancer cells. Notably, elevated expression of EHMT2 had been validated in UM samples. Furthermore, Kaplan-Meier survival analysis indicated high EHMT2 protein level was related to poor recurrence-free survival and a more advanced T stage. Chromatin immunoprecipitation sequencing analysis and the following mechanistic investigation showed that ARHGAP29 was a downstream target of EHMT2. Its transcription was suppressed by EHMT2 in a methyltransferase-dependent pattern in GNAQ/11-mutant UM cells, leading to elevated RhoA activity. Rescuing constitutively active RhoA in UM cells lacking EHMT2 restored oncogenic phenotypes. Simultaneously blocking EHMT2 and GNAQ/11 signaling in vitro and in vivo showed a synergistic effect on UM growth, suggesting the driver role of these two key molecules. In summary, our study shows evidence for an epigenetic program of EHMT2 regulation that influences UM progression and indicates inhibiting EHMT2 and MEK/ERK simultaneously as a therapeutic strategy in GNAQ/11-mutant UM.

15.
Diabetes Res Clin Pract ; 209: 111598, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38431225

RESUMO

AIMS: This study aimed to delineate correlation between stress hyperglycemia ratio (SHR) and clinical outcomes among patients in the cardiac intensive care unit (CICU). METHODS: Participants were categorized based on their SHR threshold values. Key outcomes were short-term mortality and major adverse cardiovascular events (MACEs) at 1-year follow-up. The association between SHR and outcomes was estimated using inverse probability of treatment weighting (IPTW) and Kaplan-Meier analyses. The C-statistic was used to gauge the predictive capability of SHR. RESULTS: The study included 1,133 patients from the Medical Information Mart for Intensive Care IV and 412 from the Second Affiliated Hospital of Wenzhou Medical University. Kaplan-Meier curves revealed that individuals with elevated SHR exhibited higher 90-day mortality and MACEs. When considering SHR levels and diabetes status simultaneously, those with increased SHR but non-diabetes had the highest 90-day mortality and MACEs. SHR was associated with short-term mortality and MACEs (HRadjusted 1.63 95%CI 1.15-2.30; HRIPTW 1.47 95%CI 1.05-2.05). Upon integrating SHR into the foundational model, the C-statistic was 0.821, outperforming other hyperglycemia metrics. CONCLUSION: SHR is a valuable indicator for predicting poor outcomes in CICU patients. Its utility spans potential risk stratification and offers insights for tailoring prognostic treatments to CICU patients.


Assuntos
Diabetes Mellitus , Hiperglicemia , Humanos , Unidades de Terapia Intensiva , Prognóstico , Estudos Retrospectivos , Mortalidade Hospitalar , Fatores de Risco
16.
Sci Total Environ ; 923: 171475, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453063

RESUMO

Climbazole is an azole biocide that has been widely used in formulations of personal care products. Climbazole can cause developmental toxicity and endocrine disruption as well as gut disturbance in aquatic organisms. However, the mechanisms behind gut toxicity induced by climbazole still remain largely unclear in fish. Here, we evaluate the gut effects by exposing grass carp (Ctenopharyngodon idella) to climbazole at levels ranging from 0.2 to 20 µg/L for 42 days by evaluating gene transcription and expression, biochemical analyses, correlation network analysis, and molecular docking. Results showed that climbazole exposure increased cyp1a mRNA expression and ROS level in the three treatment groups. Climbazole also inhibited Nrf2 and Keap1 transcripts as well as proteins, and suppressed the transcript levels of their subordinate antioxidant molecules (cat, sod, and ho-1), increasing oxidative stress. Additionally, climbazole enhanced NF-κB and iκBα transcripts and proteins, and the transcripts of NF-κB downstream pro-inflammatory factors (tnfα, and il-1ß/6/8), leading to inflammation. Climbazole increased pro-apoptosis-related genes (fadd, bad1, and caspase3), and decreased anti-apoptosis-associated genes (bcl2, and bcl-xl), suggesting a direct reaction to apoptosis. The molecular docking data showed that climbazole could form stable hydrogen bonds with CYP1A. Mechanistically, our findings suggested that climbazole can induce inflammation and oxidative stress through CYP450s/ROS/Nrf2/NF-κB pathways, resulting in cell apoptosis in the gut of grass carp.


Assuntos
Carpas , Suplementos Nutricionais , Imidazóis , Animais , Suplementos Nutricionais/análise , Dieta , NF-kappa B , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Imunidade Inata , Azóis/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Inflamação/induzido quimicamente , Inflamação/veterinária , Estresse Oxidativo , Apoptose , Carpas/metabolismo
17.
Plant Cell Rep ; 43(3): 83, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441719

RESUMO

KEY MESSAGE: The transcription factor AmCBF1 deepens the leaf colour of transgenic cotton by binding to the promoter of the chloroplast development-related protein GhClpR1 to promote photosynthesis. The ATP-dependent caseinolytic protease (Clp protease) family plays a crucial role within chloroplasts, comprising several Clp proteins to maintain chloroplast homeostasis. At present, research on Clp proteins mainly focuses on Arabidopsis, leaving its function in other plants, particularly in crops, less explored. In this study, we overexpressed AmCBF1 from Ammopiptanthus mongolicus (A. mongolicus) in wild type (R15), and found a significant darkening of leaf colour in transgenic plants (L28 and L30). RNA-seq analysis showed an enrichment of pathways associated with photosynthesis. Subsequent screening of differentially expressed genes revealed a significant up-regulation of GhClpR1, a gene linked to chloroplast development, in the transgenic strain. In addition, GhClpR1 was consistently expressed in upland cotton, with the highest expression observed in leaves. Subcellular localization analysis revealed that the protein encoded by GhClpR1 was located in chloroplasts. Yeast one hybrid and dual luciferase experiments showed that the AmCBF1 transcription factor positively regulates the expression of GhClpR1. VIGs-mediated silencing of GhClpR1 led to a significant yellowing phenotype in the leaves. This was accompanied by a reduction in chlorophyll content, and microscopic examination of chloroplast ultrastructure revealed severe developmental impairment. Finally, yeast two-hybrid assays showed that GhClpR1 interacts with the Clp protease complex accessory protein GhClpT2. Our study provides a foundation for studying the function of the Clp protease complex and a new strategy for cultivating high-light-efficiency cotton resources.


Assuntos
Arabidopsis , Gossypium , Gossypium/genética , Endopeptidase Clp/genética , Cloroplastos , Fotossíntese , Arabidopsis/genética , Fatores de Transcrição/genética
18.
Oral Dis ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462960

RESUMO

OBJECTIVES: To explore the effects of cathepsin K (CTSK) inhibition on type H vessel formation and alveolar bone resorption within periodontitis. METHODS: Conditioned media derived from preosteoclasts pretreated with the CTSK inhibitor odanacatib (ODN), ODN supplemented small interfering RNA targeting PDGF-BB (si-PDGF-BB), or PBS were prepared, to assess their proangiogenic effects on endothelial cells (HUVECs). A series of angiogenic-related assays were conducted to evaluate HUVEC proliferation, migration, and tube formation abilities in vitro. In addition, qRT-PCR and Western blot assays were employed to examine the expression levels of genes/proteins related to PDGF-BB/PDGFR-ß axis components. A mouse periodontitis model was established to evaluate the effects of CTSK inhibition on type H vessel formation. RESULTS: CTSK inhibition promoted PDGF-BB secretion from preosteoclasts and proliferation, migration, and tube formation activities of HUVECs in vitro. However, the conditioned medium from preosteoclasts pretreated by si-PDGF-BB impaired the angiogenic activities of HUVECs. This promoted angiogenesis function by CTSK inhibition may be mediated by the PDGF-BB/PDGFR-ß axis. Functionally, in vivo studies demonstrated that CTSK inhibition significantly accelerated type H vessel formation and alleviated bone loss within periodontitis. CONCLUSION: CTSK inhibition promotes type H vessel formation and attenuates alveolar bone resorption within periodontitis via PDGF-BB/PDGFR-ß axis.

19.
Small ; : e2309842, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38431935

RESUMO

Triple negative breast cancer (TNBC) cells have a high demand for oxygen and glucose to fuel their growth and spread, shaping the tumor microenvironment (TME) that can lead to a weakened immune system by hypoxia and increased risk of metastasis. To disrupt this vicious circle and improve cancer therapeutic efficacy, a strategy is proposed with the synergy of ferroptosis, immunosuppression reversal and disulfidptosis. An intelligent nanomedicine GOx-IA@HMON@IO is successfully developed to realize this strategy. The Fe release behaviors indicate the glutathione (GSH)-responsive degradation of HMON. The results of titanium sulfate assay, electron spin resonance (ESR) spectra, 5,5'-Dithiobis-(2-nitrobenzoic acid (DTNB) assay and T1 -weighted magnetic resonance imaging (MRI) demonstrate the mechanism of the intelligent iron atom (IA)-based cascade reactions for GOx-IA@HMON@IO, generating robust reactive oxygen species (ROS). The results on cells and mice reinforce the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis triggered by the GOx-IA@HMON@IO with the following steps: 1) GSH peroxidase 4 (GPX4) depletion by disulfidptosis; 2) IA-based cascade reactions; 3) tumor hypoxia reversal; 4) immunosuppression reversal; 5) GPX4 depletion by immunotherapy. Based on the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis, the intelligent nanomedicine GOx-IA@HMON@IO can be used for MRI-guided tumor therapy with excellent biocompatibility and safety.

20.
Food Microbiol ; 120: 104484, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431329

RESUMO

Trichothecium roseum is a typical necrotrophic fungal pathogen that not only bring about postharvest disease, but contribute to trichothecenes contamination in fruit and vegetables. Phospholipase D (PLD), as an important membrane lipid degrading enzyme, can produce phosphatidic acid (PA) by hydrolyzing phosphatidylcholine (PC) and phosphatidylinositol (PI). PA can promote the production of reactive oxygen species (ROS) by activating the activity of NADPH oxidase (NOX), thereby increasing the pathogenicity to fruit. However, the ROS mediated by TrPLD3 how to influence T. roseum infection to fruit by modulating phosphatidic acid metabolism, which has not been reported. In this study, the knockout mutant and complement strain of TrPLD3 were constructed through homologous recombination, TrPLD3 was tested for its effect on the colony growth and pathogenicity of T. roseum. The experimental results showed that the knockout of TrPLD3 inhibited the colony growth of T. roseum, altered the mycelial morphology, completely inhibited the sporulation, and reduced the accumulation of T-2 toxin. Moreover, the knockout of TrPLD3 significantly decreased pathogenicity of T. roseum on apple fruit. Compared to inoculated apple fruit with the wide type (WT), the production of ROS in apple infected with ΔTrPLD3 was slowed down, the relative expression and enzymatic activity of NOX, and PA content decreased, and the enzymatic activity and gene expression of superoxide dismutase (SOD) increased. In addition, PLD, lipoxygenase (LOX) and lipase activities were considerably decreased in apple fruit infected with ΔTrPLD3, the changes of membrane lipid components were slowed down, the decrease of unsaturated fatty acid content was alleviated, and the accumulation of saturated fatty acid content was reduced, thereby maintaining the cell membrane integrity of the inoculated apple fruit. We speculated that the decreased PA accumulation in ΔTrPLD3-inoculated apple fruit further weakened the interaction between PA and NOX on fruit, resulting in the reduction of ROS accumulation of fruits, which decreased the damage to the cell membrane and maintained the cell membrane integrity, thus reducing the pathogenicity to apple. Therefore, TrPLD3-mediated ROS plays a critical regulatory role in reducing the pathogenicity of T. roseum on apple fruit by influencing phosphatidic acid metabolism.


Assuntos
Frutas , Hypocreales , Malus , Frutas/microbiologia , Malus/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...